
Specification: CID protocol

Version : 1.4

Date : Apr 2016

Editor : Kelis

Author(s) : Thibaut Arribe
contact: contact@cid-protocol.org

License : CC-BY Kelis

Table of contents

Introduction 3
1. Design goals 4
2. Definitions 5
3. Conformance 6
4. Basic concepts 8
5. Advanced Concepts 14

5.1. Process . 14
5.2. Transport . 15
5.3. Extending CID . 16

6. Manifest schema 17
7. Implementation requirements 22

7.1. General requirements . 22
7.2. Process definition . 25
7.3. Transport : web transport . 29
7.4. Cid extension . 35

8. References 36

Specification: CID protocol Introduction

Apr 2016 3

Introduction

Plenty of platforms and services are designed to handle documents. A quick overview must include the
management platforms (such as Enterprise Content Management or Digital Asset Management platform),
platforms which exploit these documents for a dedicated use (such as e-learning or MOOC platforms) and
applications that produces the document (such as office applications, LCMS platforms or publishing chains).
Depending of its purpose and its technological bases, each platform has its own way to handle documents.
Such particularities require the development of specific connectors to exchange documents between two ◉

platforms (or sometimes between two versions of platforms). Content Interactive Delivery (CID) aims to
furnish a generic protocol to define these document exchanges in order to send or receive documents from
any document system.
CID allows a server to define its document processes in a manifest and allows a client to download and
execute this manifest. The main originality of the protocol is the specification of direct interactions between
the user and the server platform. In order to be in conformance with the particularities of document handling
of each system, a server could furnish a web page to allow the user to specify the document exchange
details.

Warning
This section is non-normative.

⚠

Specification: CID protocol Design goals

4 Apr 2016

1. Design goals

Purpose
The main purpose of the Content Interactive Delivery (CID) protocol is to delimit a common frame to define
and execute documents transactions through the internet. It furnishes a XML schema for the definition of the
server processes in a manifest and the implementation requirements for the client and the server.

Goal 1: semi-automated transaction
The main difficulty in the exchange of documents comes from the heterogeneity of systems which prevent
any universal automation for the exchanges of documents. CID offers to circumvent these difficulties by
proposing the definition of interactions between three kind of actors:

Interaction between the client software and the server software
Interaction between the user and the server software (through a web frame neutrally displayed by the
client software)
Interaction between the client software and the user (like any client software do it).

Goal 2: open and extensible
The CID protocol is open and extensible. "Open" because it is released under an open source license.
"Extensible" because it defines the terms of its future extensions.

Goal 3: easy to integrate
The design is thought to:

Allow the description of server processes already implemented by a specific server
Allow the quick development of clients dedicated to one specific case
Allow the use of a generic client

Warning
This section is non-normative.

⚠

Specification: CID protocol Definitions

Apr 2016 5

2. Definitions

Document transaction
A document transaction is an interaction between client and server software in order to transmit documents
and/or their metadata. For example, a document transfer, the selection of a document public url, the
retrieving of documents metadata such as the title or the author are considered as document transaction.

Server
A server is an application which is accessible through an intranet or the internet and which proposes
document transactions.

Client
A client is an application which can access to an intranet or the internet and which needs to process
document transactions with servers.

User
In this document, the user is the person which use the client involved in the document transaction.

Specification: CID protocol Conformance

6 Apr 2016

3. Conformance

Server conformance
A compliant server must:

expose a that is conform to the CID and accessible through a single manifest schema [p.17]

unauthenticated HTTP GET request;

support and defined in this manifest following the of processes transports normative chapter [p.22]

this document.

Specific client conformance
A compliant specific client must support all the client side and of at least processes transports one

 following the of this document.manifest normative chapter [p.22]

Generic client conformance
A compliant generic client must support all the client side and of processes transports any manifest
following the of this document.normative chapter [p.22]

Specification: CID protocol Basic concepts

Apr 2016 7

Specification: CID protocol Basic concepts

8 Apr 2016

4. Basic concepts

This section describes how to conceive and implement a simple CID process such as the first examples of
the .Discover CID document[http://www.cid-protocol.org/docs/discover/web]

What is a manifest?
A manifest is a XML file which defines the processes implemented by a server. It must be accessible through
an unauthenticated request. The validity of an XML manifest could be controlled with the HTTP GET XML 

 of these specifications.schema [p.17]

A manifest is composed of two main parts :
A list of processes
A list of transports

A process neutrally defines document transactions. It defines a list of steps without the technical information
of the transport. The transport part could define several transport alternatives using the single transport
family of these specifications: web transport; or using a dedicated transport family defined as an extension of
these specifications.

Defining a basic process
Defining the steps
Let consider a simple process of file upload from a client to a server, it is possible to define this process in
three steps :

a pre-upload exchange to check the authentication before the main request;
the file upload;
a post-upload interaction between the client and the user.

The minimal valid definition of this process is :
1
2 = =

3 = =

4 = =

5

Each step must defines its and a attribute. A required step must be processed by the client URL required
while a non-required simply may be processed by the client.

Defining the metadata
This process could use specific metadata such as the file name or the content type. It could also return other
meta such as the id of the uploaded file or its public . All the meta used in the process must be defined at URL
the beginning of the process definition.
These meta could then be called by the steps in three different attributes :

: which means the metadata may be sent by the client;useMetas

Warning
This section is non-normative.

⚠

<cid:process>

 = =<cid:exchange url "http://example.com/checkAuth" required "false"/>

 = =<cid:upload url "http://example.com/upload" required "true"/>

 = =<cid:interact url "http://example.com/interact" required "true"/>

</cid:process>

http://www.cid-protocol.org/docs/discover/web

Specification: CID protocol Basic concepts

Apr 2016 9

: which means the metadata may be sent by the client;useMetas
: which means the metadata must be sent by the client;needMetas

: which means the metadata must be returned by the server at the end of the step.returnMetas
In this case, the definition could look like behind.

1

2 =

3

4 =

5 =

6 =

7 =

8 = =

=required "false"/>
9 = = =

 = ="file-name" required "true" returnMetas "internal-id"/>
10 = =

= =returnMetas "public-url" required "true"/>
11

12
In this example, the server creates its own file name if the client does not provide it. At the end of the upload
step, the server returns the internal id which must be sent back by the client in order to let the server builds
the interaction GUI (in a conventional stateless way).

Documenting the process for the client software
There is no reserved name for metadata. The manifest could provide its own name for any meta. For
example the content type could be called or just or whatever else.contentType type

To allow the client to understand these names, the manifest could describe the metadata by an which IRI

formally qualifies the content. Such an is written in an attribute called . This attribute could be used on IRI is

the , and elements.process meta step

The main needed could be find on for generic actions and concepts or IRIs schema.org[http://www.schema.org]

on (the Dublin-Core) for the definition of specific meta .purl.org/dc[http://www.purl.org/dc]

Enriched with the appropriated , the manifest should look like behind.IRIs

1 =

2 = =

3 = =

html#ContentType"/>
4 = =

5 = =

6 = = =

 ="false" is "http://schema.org/AuthorizeAction"/>
7 = = =

 = =name" required "true" returnMetas "internal-id"/>
8 = = =

 ="public-url" required "true"/>
9

The attribute is used by the client to determine how to fill a meta or how to choose if an optional step need is

to be executed. Consequently, required steps not need for .IRIs

Documenting the process for human

A client which implement recognition could automate the filling of the needed metadata. However, a client IRI

 <?xml version="1.0" encoding="UTF-8"?>

 =<cid:manifest xmlns:cid "http://www.cid-protocol/schema/v1/core">

 <cid:process>

 =<cid:meta name "file-name"/>

 =<cid:meta name "content-type"/>

 =<cid:meta name "internal-id"/>

 =<cid:meta name "public-url"/>

 = = <cid:exchange url "http://example.com/checkAuth" needMetas "content-type"

=required "false"/>
 = = =<cid:upload url "http://example.com/upload" needMetas "content-type" useMetas

 = ="file-name" required "true" returnMetas "internal-id"/>
 = = <cid:interact url "http://example.com/interact" needMetas "internal-id"

= =returnMetas "public-url" required "true"/>
 </cid:process>

</cid:manifest>

 =<cid:process is "http://schema.org/SendAction">

 = =<cid:meta name "file-name" is "http://purl.org/dc/elements/1.1/title"/>

 = =<cid:meta name "content-type" is "http://www.w3.org/TR/html4/sgml/dtd.

html#ContentType"/>
 = =<cid:meta name "internal-id" is "http://schema.org/productID"/>

 = =<cid:meta name "public-url" is "http://schema.org/URL"/>

 = = =<cid:exchange url "http://example.com/checkAuth" needMetas "content-type" required

 ="false" is "http://schema.org/AuthorizeAction"/>
 = = =<cid:upload url "http://example.com/upload" needMetas "content-type" useMetas "file-

 = =name" required "true" returnMetas "internal-id"/>
 = = =<cid:interact url "http://example.com/interact" needMetas "internal-id" returnMetas

 ="public-url" required "true"/>
</cid:process>

http://www.schema.org
http://www.purl.org/dc

Specification: CID protocol Basic concepts

10 Apr 2016

which does not implement this feature or which does not know the specific provided by the manifest IRIs
could start this process alone.
In order to help the client to build GUI dedicated to the users, the manifest could also contain human-oriented
documentation.

1 = CID manifest of the ECM service of my Example Company

label>
2 =

3 = Send a new file

4 = Send a new file into the ECM platform. This action allows

you to send directly your files without using a classical webupload.</cid:doc>
5 = =

6 = File name

7

8 = =

html#ContentType">
9 = Content Type

10 = The type of the uploaded file writen following the MIME

standard (RFC 2045). For example application/xml</cid:doc>
11

12 = =

13 = Internal identifier

14

15 = =

16 = Public URL

17 = The URL where the uploaded content could be retrieved.

cid:doc>
18

19 = = =

 ="false" is "http://schema.org/AuthorizeAction"/>
20 = = =

 = =name" required "true" returnMetas "internal-id"/>
21 = = =

 ="public-url" required "true"/>
22

Defining the transport
The second part of the manifest is dedicated to the transport. Theoretically, it is possible to define any
application layer following the OSI model (HTTP, FTP, SMTP, etc.). However, these specifications define
only a generic web transport (so with HTTP request). The transport definition include also the authentication
scheme of the process. In this example, the server accepts basic authenticated requests (see RFC 2617[https:

 for more details).//www.ietf.org/rfc/rfc2617.txt]

A manifest which define a kind of step (interact, exchange, upload) must also define the transport modalities
of this step. It is possible to define several possibilities for each kind of step. A transport-generic server
should include :

1
2

3

4

5

6
7

8 = =

9 = =

"queryString header post"/>
10 = =

post"/>

 = CID manifest of the ECM service of my Example Company<cid:label xml:lang "en"> </cid:

label>
 =<cid:process is "http://schema.org/SendAction">

 = Send a new file<cid:label xml:lang "en"> </cid:label>

 = Send a new file into the ECM platform. This action allows <cid:doc xml:lang "en">

you to send directly your files without using a classical webupload.</cid:doc>
 = =<cid:meta name "file-name" is "http://purl.org/dc/elements/1.1/title">

 = File name<cid:label xml:lang "en"> </cid:label>

 </cid:meta>

 = =<cid:meta name "content-type" is "http://www.w3.org/TR/html4/sgml/dtd.

html#ContentType">
 = Content Type<cid:label xml:lang "en"> </cid:label>

 = The type of the uploaded file writen following the MIME <cid:doc xml:lang "en">

standard (RFC 2045). For example application/xml</cid:doc>
 </cid:meta>

 = =<cid:meta name "internal-id" is "http://schema.org/productID">

 = Internal identifier<cid:label xml:lang "en"> </cid:label>

 < /cid:meta>

 = =<cid:meta name "public-url" is "http://schema.org/URL">

 = Public URL<cid:label xml:lang "en"> </cid:label>

 = The URL where the uploaded content could be retrieved.<cid:doc xml:lang "en"> </

cid:doc>
 </cid:meta>

 = = =<cid:exchange url "http://example.com/checkAuth" needMetas "content-type" required

 ="false" is "http://schema.org/AuthorizeAction"/>
 = = =<cid:upload url "http://example.com/upload" needMetas "content-type" useMetas "file-

 = =name" required "true" returnMetas "internal-id"/>
 = = =<cid:interact url "http://example.com/interact" needMetas "internal-id" returnMetas

 ="public-url" required "true"/>
</cid:process>

<cid:transports>

 <cid:webTransport>

 <cid:authentications>

 <cid:basicHttp/>

 </cid:authentications>

 <cid:webExchange>

 = =<request method "GET" properties "header queryString"/>

 = =<request method "POST;application/x-www-form-urlencoded" properties

"queryString header post"/>
 = =<request method "POST;multipart/form-data" properties "header queryString

post"/>

https://www.ietf.org/rfc/rfc2617.txt
https://www.ietf.org/rfc/rfc2617.txt
https://www.ietf.org/rfc/rfc2617.txt

Specification: CID protocol Basic concepts

Apr 2016 11

11

12
13

14 = =

15 = =

"queryString header post"/>
16 = =

post"/>
17

18
19

20 = =

21 = =

22 = =

post"/>
23

24

25

The definition of the method must be followed by the content type of the form when such a form HTTP POST

is used. The attribute list the possibilities of metadata storage :properties

header means that the server accepts the metadata in the header of the request.HTTP

A "text/plain" value of the "content-type" meta should be inserted as "content-type":"text/plain" inside the
 header.HTTP

queryString means that the server accepts the metadata in the as query string (see URL RFC 3986[https:/

 section 3.4 for more details)./tools.ietf.org/html/rfc3986]

A "text/plain" value of the "content-type" meta should be inserted to the as "(?|&)content-type=textURL
/plain".

post means that the server accepts the metadata in the form of a POST request.
The value is stored in field which share its name with the name of the meta ("content-type" in this
example).

Implementation details
The complete manifest can be seen behind. It must be exposed by the server and accessible through a
single request without any authentication.HTTP GET

1

2 =

3 = CID manifest of the ECM service of my Example Company

label>
4 =

5 = Send a new file

6 = Send a new file into the ECM platform. This action

allows you to send directly your files
7 without using a classical webupload.

8

9 = =

10 = File name

11

12 = =

html#ContentType">
13 = Content Type

14 = The type of the uploaded file writen following the

MIME standard (RFC 2045). For

 </cid:webExchange>

 <cid:webInteract>

 = =<request method "GET" properties "header queryString"/>

 = =<request method "POST;application/x-www-form-urlencoded" properties

"queryString header post"/>
 = =<request method "POST;multipart/form-data" properties "header queryString

post"/>
 </cid:webInteract>

 <cid:webUpload>

 = =<request method "PUT" properties "header queryString"/>

 = =<request method "POST" properties "header queryString"/>

 = =<request method "POST;multipart/form-data" properties "header queryString

post"/>
 </cid:webUpload>

 </cid:webTransport>

 </cid:transports>

 <?xml version="1.0" encoding="UTF-8"?>

 =<cid:manifest xmlns:cid "http://www.cid-protocol.org/schema/v1/core">

 = CID manifest of the ECM service of my Example Company<cid:label xml:lang "en"> </cid:

label>
 =<cid:process is "http://schema.org/SendAction">

 = Send a new file<cid:label xml:lang "en"> </cid:label>

 = Send a new file into the ECM platform. This action <cid:doc xml:lang "en">

allows you to send directly your files
 without using a classical webupload.

 </cid:doc>

 = =<cid:meta name "file-name" is "http://purl.org/dc/elements/1.1/title">

 = File name<cid:label xml:lang "en"> </cid:label>

 </cid:meta>

 = =<cid:meta name "content-type" is "http://www.w3.org/TR/html4/sgml/dtd.

html#ContentType">
 = Content Type<cid:label xml:lang "en"> </cid:label>

 = The type of the uploaded file writen following the <cid:doc xml:lang "en">

MIME standard (RFC 2045). For

https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986

Specification: CID protocol Basic concepts

12 Apr 2016

1.

15 example application/xml

16

17

18 = =

19 = Internal identifier

20

21 = =

22 = Public URL

23 = The URL where the uploaded content could be

retrieved.</cid:doc>
24

25 = =

=required "false"
26 =

27 = = =

 ="file-name" required "true"
28 =

29 = =

=returnMetas "public-url"
30 =

31

32
33

34

35

36

37

38
39

40 = =

41 = =

"queryString header post"/>
42 = =

queryString post"/>
43

44
45

46 = =

47 = =

"queryString header post"/>
48 = =

queryString post"/>
49

50
51

52 = =

53 = =

54 = =

queryString post"/>
55

56

57

58
The client must download the manifest to analyze and execute the process.

The client could begin the transaction by an authenticated exchange request containing the content-
 meta. It could support one of the defined transport possibilities :type
A method with metadata stored in the header of the request or in the as query HTTP GET URL
string.

A method containing a URL encoded form. The metadata could be stored in the HTTP POST

header, in the URL as query string or in the form.

 example application/xml

 </cid:doc>

 </cid:meta>

 = =<cid:meta name "internal-id" is "http://schema.org/productID">

 = Internal identifier<cid:label xml:lang "en"> </cid:label>

 </cid:meta>

 = =<cid:meta name "public-url" is "http://schema.org/URL">

 = Public URL<cid:label xml:lang "en"> </cid:label>

 = The URL where the uploaded content could be <cid:doc xml:lang "en">

retrieved.</cid:doc>
 </cid:meta>

 = = <cid:exchange url "http://example.com/checkAuth" needMetas "content-type"

=required "false"
 =is "http://schema.org/AuthorizeAction"/>

 = = =<cid:upload url "http://example.com/upload" needMetas "content-type" useMetas

 ="file-name" required "true"
 =returnMetas "internal-id"/>

 = = <cid:interact url "http://example.com/interact" needMetas "internal-id"

=returnMetas "public-url"
 =required "true"/>

 </cid:process>

 <cid:transports>

 <cid:webTransport>

 <cid:authentications>

 <cid:basicHttp/>

 </cid:authentications>

 <cid:webExchange>

 = =<request method "GET" properties "header queryString"/>

 = =<request method "POST;application/x-www-form-urlencoded" properties

"queryString header post"/>
 = =<request method "POST;multipart/form-data" properties "header

queryString post"/>
 </cid:webExchange>

 <cid:webInteract>

 = =<request method "GET" properties "header queryString"/>

 = =<request method "POST;application/x-www-form-urlencoded" properties

"queryString header post"/>
 = =<request method "POST;multipart/form-data" properties "header

queryString post"/>
 </cid:webInteract>

 <cid:webUpload>

 = =<request method "PUT" properties "header queryString"/>

 = =<request method "POST" properties "header queryString"/>

 = =<request method "POST;multipart/form-data" properties "header

queryString post"/>
 </cid:webUpload>

 </cid:webTransport>

 </cid:transports>

</cid:manifest>

Specification: CID protocol Basic concepts

Apr 2016 13

1.

2.

3.

header, in the URL as query string or in the form.

A method containing a multipart form. The metadata could be stored in the header, in HTTP POST
the URL as query string or in the form.

The server must support any of the configuration written in the manifest.
The client must then upload the document in a single authenticated request containing the content-type
meta and optionally the file name. It could support one of the defined transports possibilities :

A method with the file in the body and the meta in the header of the request or in the HTTP PUT
URL as query string.

A method with the file in the body and the meta in the header of the request or in the HTTP POST
URL as query string.

A method with the file in a field and the meta in the form, in the header of HTTP POST cidContent
the request or in the URL as query string.

Note that it is not possible to send binary files in a URL encoded form.
The server must support any of the configuration written in the manifest.
The server must include the returned meta in the response. With a web transport and for the exchange
and upload steps, a returned meta must be inserted in a javascript object in the body of the response
(for example: {"internal-id":"0X001242"}).
The client must then begin an interaction between the user and the server. The client must send the first
request, which must be authenticated and which must contain the internal-id meta. The client must
support one of the following transport methods for the first request:

A method with metadata stored in the header of the request or in the URL as query HTTP GET
string.

A method containing a URL encoded form. The metadata could be stored in the HTTP POST
header, in the URL as query string or in the form.

A method containing a multipart form. The metadata could be stored in the header, in HTTP POST
the URL as query string or in the form.

The server must support any of the configuration written in the manifest.
The server must include a HTML page in the body of the response. The client must show this page in a
web frame. The user could now interact directly with the server through this web frame.
At the end of the interaction (for example, by clicking on "validation" button), the HTML page must send
a custom event called "cid-interaction-ended". The body of this event must embed a javascript object
containing the returned metadata (the public url). The web page could also throw a custom event called
"cid-interaction-aborted" to express the failure of the interaction. This second event does not require any
body.

Specification: CID protocol Advanced Concepts

14 Apr 2016

5. Advanced Concepts

5.1. Process

Defining several processes in a single manifest

The of this specification allows the definition several processes. They are defined manifest schema [p.17]

one by one in the first part of the manifest.
1

2 =

3 ...

4 ...

5 ...

6 ...

7

Warning
This section is non-normative.

⚠

 <?xml version="1.0" encoding="UTF-8"?>

 =<cid:manifest xmlns:cid "http://www.kelis.fr/cid/v2/core">

 ...<cid:process> </cid:process>

 ...<cid:process> </cid:process>

 ...<cid:process> </cid:process>

 ...<cid:transports> </cid:transports>

</cid:manifest>

Specification: CID protocol Advanced Concepts

Apr 2016 15

5.2. Transport

Asynchronous upload
An asynchronous upload is a specific upload declared by the server when the time needed to process the
uploaded file does not allow a synchronous response. The server could then define a user-oriented and/or a
system oriented wait system.

The user-oriented system reuse the interaction mechanism.
The system-oriented system reuse the exchange mechanism.

User and system oriented wait mechanism must declare a attribute and could declare the , url needMetas

 and step attributes.useMetas returnMetas

1 = =

 =dc-modified tags" required "true">
2 = =

/>
3 = =

4
To implement a system wait, the client must send a HTTP GET requests until it gets a 200 response code. A
negative response must contains a 202 response code.

Allowing statefull server
A statefull server need to know which session is related to a request. To perform this, CID provides two
principles: cookies and session properties.

Cookies
A web transport definition could specify in the manifest that the client must support cookies to complete the
transaction. To perform this, the element must contain a attribute set to true. By webTransport needCookies
default (without any attribute) the value is considered as false.

1 =

2 ...

3

Session properties
A session property is a pair of key, value which are sent and received following the same scheme than the
metadata. The key of the session properties must be declared in a dedicated attribute of the webTransport
element. A client which operate a process through such a transport must check if the defined property is
returned by the server at each step. When this is the case, the client must send back this property.

1 =

2 ...

3
It is possible to declare several session properties in the attribute.

Warning
This section is non-normative.

⚠

 = =<cid:upload url "http://example.com/upload?step=start" needMetas "dc-title dc-creator

 =dc-modified tags" required "true">
 = =<cid:systemWait url "http://example.com/wait?method=system" returnMetas "Public-url"

/>
 = =<cid:userWait url "http://example.com/wait?method=user" returnMetas "Public-url"/>

</cid:upload>

 =<cid:webTransport needCookies "true">

 ...

</cid:webTransport>

 =<cid:webTransport sessionProperties "session-id">

 ...

</cid:webTransport>

Specification: CID protocol Advanced Concepts

16 Apr 2016

Defining several transports in a single manifest
As for the processes or the authentication, it is possible to define several transport. All the transport should
be inserted as a new child of the element.transports

By default, a client could use any process with any transport. It is possible to dedicate a process to a specific
transport by the use of ids. A non-generic transport must declare its in an attribute. A process could bind id

this transport by the use of the attribute.transports

1 =

2 ...

3
4 ...

5
6 = =

7 ...

8

9

5.3. Extending CID

The CID protocol specifies the modalities of its extension. The allows the insertion of schema [p.17]

unknown elements in the and elements.authentication transport

A CID extension is characterized by a new schema defining the new XML elements and a specifications
document which defines the required implementations.

Warning
This section is non-normative.

⚠

 =<cid:process transports "sessionPropTrans">

...

</cid:process>

...

<cid:transports>

 = =<cid:webTransport id "sessionPropTrans" sessionProperties "session-id">

 ...

 </cid:webTransport>

</cid:transports>

Specification: CID protocol Manifest schema

Apr 2016 17

6. Manifest schema

1

2 = =

3 = =

"http://www.cid-protocol/schema/v1/core">
4 = =

org/XML/1998/namespace"/>
5
6 =

7

8

9

10 = = = =

localized-element"/>
11 = = = =

localized-element"/>
12
13

14 = =

15

16

17

18 = = =

 =type "cid:localized-element"/>
19 = = =

=type "cid:localized-element"/>
20

21 = = =

 ="unbounded" type "cid:restriction-element"/>
22 = = =

=type "cid:meta-element"/>
23

24 =

25 = =

/>
26 = =

27 = =

element"/>
28

29

30
31

32 = =

33

34 = =

35

36

37
38

39 =

40

41 =

42

43 =

44

45

46

supported authentication -->
47 =

 <?xml version="1.0" encoding="UTF-8"?>

 = =<xs:schema xmlns:xs "http://www.w3.org/2001/XMLSchema" elementFormDefault "qualified"

 = =targetNamespace "http://www.cid-protocol/schema/v1/core" xmlns:cid

"http://www.cid-protocol/schema/v1/core">
 = =<xs:import schemaLocation "http://www.w3.org/2001/xml.xsd" namespace "http://www.w3.

org/XML/1998/namespace"/>

 =<xs:element name "manifest">

 <xs:complexType>

 <xs:sequence>

 <!-- Human oriented documentation -->

 = = = =<xs:element name "label" minOccurs "0" maxOccurs "unbounded" type "cid:

localized-element"/>
 = = = =<xs:element name "doc" minOccurs "0" maxOccurs "unbounded" type "cid:

localized-element"/>

 <!-- list of processes -->

 = =<xs:element name "process" maxOccurs "unbounded">

 <xs:complexType>

 <xs:sequence>

 <!-- Human oriented process documentation -->

 = = =<xs:element name "label" minOccurs "0" maxOccurs "unbounded"

 =type "cid:localized-element"/>
 = = = <xs:element name "doc" minOccurs "0" maxOccurs "unbounded"

=type "cid:localized-element"/>
 <!-- Meta and restriction declarationwebAsyncUpload -->

 = = =<xs:element name "restriction" minOccurs "0" maxOccurs

 ="unbounded" type "cid:restriction-element"/>
 = = = <xs:element name "meta" minOccurs "0" maxOccurs "unbounded"

=type "cid:meta-element"/>
 <!-- Steps declaration -->

 =<xs:choice maxOccurs "unbounded">

 = =<xs:element name "exchange" type "cid:asyncStep-element"

/>
 = =<xs:element name "upload" type "cid:asyncStep-element"/>

 = =<xs:element name "interact" type "cid:regularStep-

element"/>
 </xs:choice>

 </xs:sequence>

 <!-- Bind a this process to a specific transport -->

 = =<xs:attribute name "transports" type "cid:NCName-list"/>

 <!-- Computer oriented process description -->

 = =<xs:attribute name "is" type "cid:uri-list"/>

 </xs:complexType>

 </xs:element>

 <!-- List of defined transports -->

 =<xs:element name "transports">

 <xs:complexType>

 =<xs:choice maxOccurs "unbounded">

 <!-- Web transport declaration -->

 =<xs:element name "webTransport">

 <xs:complexType>

 <xs:all>

 <!-- First transport declaration step :

supported authentication -->
 =<xs:element name "authentications">

Specification: CID protocol Manifest schema

18 Apr 2016

47 =

48
49

means "no authentication needed" -->
50 = =

"unbounded">
51 =

52

53

54 =

55

56

57

interact -->
58 =

>
59

60 =

=type "xs:anyURI"/>
61

62

63

64

65

66
67

68 = =

69

70

71 = =

 ="cid:regularRequest" maxOccurs "unbounded"/>
72

73

74

75 = =

76

77

78 = =

 ="cid:regularRequest" maxOccurs "unbounded"/>
79

80

81

82 = =

83

84

85 = =

 ="cid:uploadRequest" maxOccurs "unbounded"/>
86

87

88

89

90
91

transport -->
92 = =

93

94 = =

95

96

properties must be neutrally handled
97

98

 <xs:complexType>
 <!-- An empty authentications element

means "no authentication needed" -->
 = =<xs:choice minOccurs "0" maxOccurs

"unbounded">
 =<xs:element name "noAuthentication">

 <xs:complexType/>

 </xs:element>

 =<xs:element name "basicHttp">

 <xs:complexType/>

 </xs:element>

 <!-- Must be operated as a web

interact -->
 =<xs:element name "webAuthentication"

>
 <xs:complexType>

 = <xs:attribute name "url"

=type "xs:anyURI"/>
 </xs:complexType>

 </xs:element>

 </xs:choice>

 </xs:complexType>

 </xs:element>

 <!-- List of step transport declaration -->

 = =<xs:element name "webExchange" minOccurs "0">

 <xs:complexType>

 <xs:sequence>

 = =<xs:element name "request" type

 ="cid:regularRequest" maxOccurs "unbounded"/>
 </xs:sequence>

 </xs:complexType>

 </xs:element>

 = =<xs:element name "webInteract" minOccurs "0">

 <xs:complexType>

 <xs:sequence>

 = =<xs:element name "request" type

 ="cid:regularRequest" maxOccurs "unbounded"/>
 </xs:sequence>

 </xs:complexType>

 </xs:element>

 = =<xs:element name "webUpload" minOccurs "0">

 <xs:complexType>

 <xs:sequence>

 = =<xs:element name "request" type

 ="cid:uploadRequest" maxOccurs "unbounded"/>
 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:all>

 <!-- Id needed to bind a process to a specific

transport -->
 = =<xs:attribute name "id" type "xs:NCName"/>

 <!-- True if the server use a cookies -->

 = =<xs:attribute name "needCookies" type "xs:boolean"/>

 <!--

 Names of session properties. A session

properties must be neutrally handled
 (returned by the client if sent by the server

 -->

Specification: CID protocol Manifest schema

Apr 2016 19

99 = =

NCName-list"/>
100

101

102 =

103

104

105

106

107

108

109
110

111

112

113
114

115 =

116

117

118 =

119

120 =

121

122

123
124

125 =

126

127

128 =

129

130 =

131

132

133
134

135 =

136 =

137 =

138 =

139 =

140

141

142
143

144 =

145 =

146 =

147 =

148 =

149 =

150

151

152
153

154 =

155

156

157

 = =<xs:attribute name "sessionProperties" type "cid:

NCName-list"/>
 </xs:complexType>

 </xs:element>

 =<xs:any namespace "##other"/>

 </xs:choice>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <!-- ***

 SIMPLE TYPE LIBRARY

 *** -->

 <!-- List of uris (is attribute) -->

 =<xs:simpleType name "uri-list">

 <xs:restriction>

 <xs:simpleType>

 =<xs:list itemType "xs:anyURI"/>

 </xs:simpleType>

 =<xs:minLength value "1"/>

 </xs:restriction>

 </xs:simpleType>

 <!-- List of properties name (sessionProperties attribute) -->

 =<xs:simpleType name "NCName-list">

 <xs:restriction>

 <xs:simpleType>

 =<xs:list itemType "xs:NCName"/>

 </xs:simpleType>

 =<xs:minLength value "1"/>

 </xs:restriction>

 </xs:simpleType>

 <!-- request method token definition (get or post) -->

 =<xs:simpleType name "getPost-token">

 =<xs:restriction base "xs:token">

 =<xs:enumeration value "GET"/>

 =<xs:enumeration value "POST;application/x-www-form-urlencoded"/>

 =<xs:enumeration value "POST;multipart/form-data"/>

 </xs:restriction>

 </xs:simpleType>

 <!-- request method token definition (get, put or post) -->

 =<xs:simpleType name "getPutPost-token">

 =<xs:restriction base "xs:token">

 =<xs:enumeration value "GET"/>

 =<xs:enumeration value "PUT"/>

 =<xs:enumeration value "POST"/>

 =<xs:enumeration value "POST;multipart/form-data"/>

 </xs:restriction>

 </xs:simpleType>

 <!-- list of properties storage method (header, querystring or post) -->

 =<xs:simpleType name "postProp-list">

 <xs:restriction>

 <xs:simpleType>

 <xs:list>

Specification: CID protocol Manifest schema

20 Apr 2016

158
159 =

160 =

161 =

162 =

163

164

165

166

167 =

168

169

170
171

172

173

174

175

176 = =

177 =

178

179
180

181 =

182

183 = = = =

localized-element"/>
184 = = = =

localized-element"/>
185

186 = = =

187 = =

188 = = =

189

190

191

192 =

193

194 = = = =

localized-element"/>
195 = = = =

localized-element"/>
196 = = =

197 =

198

199

200 = = =

201 = =

202

203

204

205 =

206 = = =

207 = =

208 = =

209 = =

210

211

212

213 =

 <xs:simpleType>
 =<xs:restriction base "xs:token">

 =<xs:enumeration value "header"/>

 =<xs:enumeration value "queryString"/>

 =<xs:enumeration value "post"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:list>

 </xs:simpleType>

 =<xs:minLength value "1"/>

 </xs:restriction>

 </xs:simpleType>

 <!-- ***

 COMPLEXE TYPE LIBRARY

 *** -->

 <!-- localized informations (used to write human oriented doc) -->

 = =<xs:complexType name "localized-element" mixed "true">

 =<xs:attribute ref "xml:lang"/>

 </xs:complexType>

 <!-- restriction element -->

 =<xs:complexType name "restriction-element">

 <xs:sequence>

 = = = =<xs:element name "label" minOccurs "0" maxOccurs "unbounded" type "cid:

localized-element"/>
 = = = =<xs:element name "doc" minOccurs "0" maxOccurs "unbounded" type "cid:

localized-element"/>
 </xs:sequence>

 = = =<xs:attribute name "name" use "required" type "xs:NCName"/>

 = =<xs:attribute name "is" type "cid:uri-list"/>

 = = =<xs:attribute name "value" use "required" type "xs:string"/>

 </xs:complexType>

 <!-- meta element -->

 =<xs:complexType name "meta-element">

 <xs:sequence>

 = = = =<xs:element name "label" minOccurs "0" maxOccurs "unbounded" type "cid:

localized-element"/>
 = = = =<xs:element name "doc" minOccurs "0" maxOccurs "unbounded" type "cid:

localized-element"/>
 = = =<xs:element name "value" minOccurs "0" maxOccurs "unbounded">

 =<xs:complexType mixed "true"/>

 </xs:element>

 </xs:sequence>

 = = =<xs:attribute name "name" use "required" type "xs:NCName"/>

 = =<xs:attribute name "is" type "cid:uri-list"/>

 </xs:complexType>

 <!-- common step attribute -->

 =<xs:complexType name "step-commons">

 = = =<xs:attribute name "url" use "required" type "xs:anyURI"/>

 = =<xs:attribute name "needMetas" type "cid:NCName-list"/>

 = =<xs:attribute name "useMetas" type "cid:NCName-list"/>

 = =<xs:attribute name "returnMetas" type "cid:NCName-list"/>

 </xs:complexType>

 <!-- Step element (used by interact and asyncStep) -->

 =<xs:complexType name "regularStep-element">

Specification: CID protocol Manifest schema

Apr 2016 21

214

215 =

216 = =

217 = =

218

219

220

221

222

223 =

224

225 =

226

227 = =

228

229

230 =

231 = =

NCName-list"/>
232

233

234

235

236 = = =

237

238

239

240

241
242

243 =

244 = = =

245 = = =

246

247

248

249 =

250 = = =

251 = = =

252

253

254

255 =

256 = = =

257 = = =

258

259

 <xs:complexContent>

 =<xs:extension base "cid:step-commons">

 = =<xs:attribute name "is" type "cid:uri-list"/>

 = =<xs:attribute name "required" type "xs:boolean"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <!-- Step element (used by upload and exchange) -->

 =<xs:complexType name "asyncStep-element">

 <xs:complexContent>

 =<xs:extension base "cid:regularStep-element">

 <xs:all>

 = =<xs:element name "systemWait" minOccurs "0">

 <xs:complexType>

 <xs:complexContent>

 =<xs:extension base "cid:step-commons">

 = =<xs:attribute name "waitProperties" type "cid:

NCName-list"/>
 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 = = =<xs:element name "userWait" minOccurs "0" type "cid:step-commons"/>

 </xs:all>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <!-- Definition of a regular request (exchange/interact) -->

 =<xs:complexType name "regularRequest">

 = = =<xs:attribute name "method" use "required" type "cid:getPost-token"/>

 = = =<xs:attribute name "properties" use "required" type "cid:postProp-list"/>

 </xs:complexType>

 <!-- Definition of a request which contains -->

 =<xs:complexType name "uploadRequest">

 = = =<xs:attribute name "method" use "required" type "cid:getPutPost-token"/>

 = = =<xs:attribute name "properties" use "required" type "cid:postProp-list"/>

 </xs:complexType>

 <!-- Definition of a transport property -->

 =<xs:complexType name "property">

 = = =<xs:attribute name "key" use "required" type "xs:NCName"/>

 = = =<xs:attribute name "value" use "required" type "xs:NCName"/>

 </xs:complexType>

</xs:schema>

Specification: CID protocol Implementation requirements

22 Apr 2016

7. Implementation requirements

7.1. General requirements

Manifest handling
Validity of the manifest

A valid manifest MUST be conform to the . Even a CID extension CAN NOT require manifest schema [p.17]

an improper manifest.

Server exposition
The manifest MUST be accessible through a single unauthenticated HTTP GET request.

Client retrieving
The downloading of the manifest is the first step of the transaction. The client MUST download a new
manifest at the beginning of each process.

Process and transport selection
Once the manifest is downloaded by the client, this one MUST select one process and one transport to
complete the transaction.

Default behavior
A manifest defines a list of processes and a list of transports. By default, all the processes MUST be
compatible with any of the transports, which mean that all the transports MUST defines all the requests
defined in the processes (webExchange, webUpload and webInteract).

Example
Lets consider a manifest that contains two processes defined as following :

1
2 Upload with post interation

3 = =

4 = =

5

6
7 Direct upload

8 = =

9
All the transports of the manifest MUST defines one or more webUload requests AND one or more
webInteract requests.
Therefore, the following manifest is valid :

1

2 =

3

4 Upload with post interation

5 = =

6 = =



<cid:process>

 Upload with post interation<cid:label> </cid:label>

 = =<cid:upload url "http://example.com/upload" required "true"/>

 = =<cid:interact url "http://example.com/interact" required "true"/>

 </cid:process>

<cid:process>

Direct upload<cid:label> </cid:label>

 = =<cid:upload url "http://example.com/upload" required "true"/>

</cid:process>

 <?xml version="1.0" encoding="UTF-8"?>

 =<cid:manifest xmlns:cid "http://www.cid-protocol.org/schema/v1/core">

 <cid:process>

 Upload with post interation<cid:label> </cid:label>

 = =<cid:upload url "http://example.com/upload" required "true"/>

 = =<cid:interact url "http://example.com/interact" required "true"/>

Specification: CID protocol Implementation requirements

Apr 2016 23

6 = =

7
8

9 Direct upload

10 = =

11

12
13

14

15

16

17

18
19

20 = =

21 = =

"queryString header post"/>
22 = =

queryString post"/>
23

24
25

26 = =

27 = =

28 = =

queryString post"/>
29

30

31

32
And the following one is not valid.

1

2 =

3

4 Upload with post interation

5 = =

6 = =

7

8

9 Direct upload

10 = =

11

12
13

14

15

16

17

18
19

20 = =

21 = =

"queryString header post"/>
22 = =

queryString post"/>
23

24
25

26 = =

27 = =

 </cid:process>
 <cid:process>

 Direct upload<cid:label> </cid:label>

 = =<cid:upload url "http://example.com/upload" required "true"/>

 </cid:process>

 <cid:transports>

 <cid:webTransport>

 <cid:authentications>

 <cid:basicHttp/>

 </cid:authentications>

 <cid:webInteract>

 = =<request method "GET" properties "header queryString"/>

 = =<request method "POST;application/x-www-form-urlencoded" properties

"queryString header post"/>
 = =<request method "POST;multipart/form-data" properties "header

queryString post"/>
 </cid:webInteract>

 <cid:webUpload>

 = =<request method "PUT" properties "header queryString"/>

 = =<request method "POST" properties "header queryString"/>

 = =<request method "POST;multipart/form-data" properties "header

queryString post"/>
 </cid:webUpload>

 </cid:webTransport>

 </cid:transports>

</cid:manifest>

 <?xml version="1.0" encoding="UTF-8"?>

 =<cid:manifest xmlns:cid "http://www.cid-protocol.org/schema/v1/core">

 <cid:process>

 Upload with post interation<cid:label> </cid:label>

 = =<cid:upload url "http://example.com/upload" required "true"/>

 = =<cid:interact url "http://example.com/interact" required "true"/>

 </cid:process>

 <cid:process>

 Direct upload<cid:label> </cid:label>

 = =<cid:upload url "http://example.com/upload" required "true"/>

 </cid:process>

 <cid:transports>

 <cid:webTransport>

 <cid:authentications>

 <cid:basicHttp/>

 </cid:authentications>

 <cid:webInteract>

 = =<request method "GET" properties "header queryString"/>

 = =<request method "POST;application/x-www-form-urlencoded" properties

"queryString header post"/>
 = =<request method "POST;multipart/form-data" properties "header

queryString post"/>
 </cid:webInteract>

 <cid:webUpload>

 = =<request method "PUT" properties "header queryString"/>

 = =<request method "POST" properties "header queryString"/>

Specification: CID protocol Implementation requirements

24 Apr 2016

Transport id

All the transports definition could include an attribute. This id could be called in the attribute of a id transports

 to restrain the compatibility to one or more specific transports definition.process

28 = =

queryString post"/>
29

30

31
32

33

34

35

36
37

38 = =

39 = =

40 = =

queryString post"/>
41

42

43

44

Example

With an and attributes, the previously not valid manifest could be restrained as following.id transports

1

2 =

3 =

4 Upload with post interation

5 = =

6 = =

7

8

9 Direct upload

10 = =

11

12
13

14 =

15

16

17

18
19

20 = =

21 = =

"queryString header post"/>
22 = =

queryString post"/>
23

24
25

26 = =

27 = =

28 = =

queryString post"/>
29



 = =<request method "POST;multipart/form-data" properties "header

queryString post"/>
 </cid:webUpload>

 </cid:webTransport>

 <cid:webTransport>

 <cid:authentications>

 <cid:basicHttp/>

 </cid:authentications>

 <cid:webUpload>

 = =<request method "PUT" properties "header queryString"/>

 = =<request method "POST" properties "header queryString"/>

 = =<request method "POST;multipart/form-data" properties "header

queryString post"/>
 </cid:webUpload>

 </cid:webTransport>

 </cid:transports>

</cid:manifest>

 <?xml version="1.0" encoding="UTF-8"?>

 =<cid:manifest xmlns:cid "http://www.cid-protocol.org/schema/v1/core">

 =<cid:process transports "myTransportId">

 Upload with post interation<cid:label> </cid:label>

 = =<cid:upload url "http://example.com/upload" required "true"/>

 = =<cid:interact url "http://example.com/interact" required "true"/>

 </cid:process>

 <cid:process>

 Direct upload<cid:label> </cid:label>

 = =<cid:upload url "http://example.com/upload" required "true"/>

 </cid:process>

 <cid:transports>

 =<cid:webTransport id "myTransportId">

 <cid:authentications>

 <cid:basicHttp/>

 </cid:authentications>

 <cid:webInteract>

 = =<request method "GET" properties "header queryString"/>

 = =<request method "POST;application/x-www-form-urlencoded" properties

"queryString header post"/>
 = =<request method "POST;multipart/form-data" properties "header

queryString post"/>
 </cid:webInteract>

 <cid:webUpload>

 = =<request method "PUT" properties "header queryString"/>

 = =<request method "POST" properties "header queryString"/>

 = =<request method "POST;multipart/form-data" properties "header

queryString post"/>
 </cid:webUpload>

Specification: CID protocol Implementation requirements

Apr 2016 25

Select a pair
Once determined the list of valid pairs of process and transport, the client must choose one of them. The way
this choice is done is out of the scope of the CID protocol. Basically, a client could build a GUI for its user
using the and of the manifest or compute an automatic choice using the attributes.labels docs is

7.2. Process definition

Minimal process definition
A document transaction available on a server is the composition of several steps in order to achieve one goal
such as document upload, metadata retrieving, document selection, etc. A server is defined by one process
element in the manifest.

As explained in the , a process must be compatible with all the transport or general requirements [p.22]

specifically bind one or more compatible processes with the attribute.transports

Describe a process
A server may describe its processes. There is two ways to do this description.
System oriented : one or more IRI can be defined in the attribute. These IRI allow a client to automate the is
process recognition and selection.
User oriented : one or more localized and attributes can be used to describe the process.label doc

30
31
32

33

34

35

36
37

38 = =

39 = =

40 = =

queryString post"/>
41

42

43

44

Warning
The minimal process definition must contains at least one step as showed behind.

⚠

Example
1
2 = =

3



Example
A fully described minimal process could be like following.



 </cid:webTransport>

 <cid:webTransport>

 <cid:authentications>

 <cid:basicHttp/>

 </cid:authentications>

 <cid:webUpload>

 = =<request method "PUT" properties "header queryString"/>

 = =<request method "POST" properties "header queryString"/>

 = =<request method "POST;multipart/form-data" properties "header

queryString post"/>
 </cid:webUpload>

 </cid:webTransport>

 </cid:transports>

 </cid:manifest>

<cid:process>

 = =<cid:upload url "http://example.com/upload" required "true"/>

</cid:process>

Specification: CID protocol Implementation requirements

26 Apr 2016

Metadata
Any metadata used by a step of the process MUST be previously declared. A used metadata is a metadata
called by the , and attributes of the steps.needMetas useMetas returnMetas

Minimal metadata declaration
The minimal declaration of a metadata is composed of a single element and its attribute.meta name

The attribute is required because its content is used by the , and name needMetas useMetas

 attributes of the step.returnMetas

Describe a meta
A meta could be described in a user-oriented way by and elements and in system-oriented way label doc

by the attribute.is

Restrain the possible values of a meta
A server could restrain the valid values of a meta in the manifest. This restriction is done with value
elements containing the proposed values.

1 =
2 = Upload a document onto Example.com server

3 = This process allows a client to upload any resource file

onto our Example.com server. Once uploaded, the file will be automatically located into
the resources folder of your account

4

5 = =

6

Example
1 =



Example
1 = =

org/title">
2 = Title of the document

3 = Titre du document

4 = This meta should contain the title of document and

not name of the file</cid:doc>
5 = Cette meta devrait contenir le titre du document et

non le nom du fichier</cid:doc>
6



Warning
The descriptions elements does not change any client or server implementation requirement.

⚠

Example
1 = =

2 = Available archive formats

3 application/zip

4 application/jar

5 application/x-tar



 =<cid:process is "http://schema.org/SendAction">
 = Upload a document onto Example.com server<cid:label xml:lang "en"> </cid:label>

 = This process allows a client to upload any resource file <cid:doc xml:lang "en">

onto our Example.com server. Once uploaded, the file will be automatically located into
the resources folder of your account
 </cid:doc>

 = =<cid:upload url "http://example.com/upload" required "true"/>

</cid:process>

 =<cid:meta name "title"/>

 = =<cid:meta name "title" is "http://purl.org/dc/elements/1.1/title https://schema.

org/title">
 = Title of the document<cid:label xml:lang "en"> </cid:label>

 = Titre du document<cid:label xml:lang "fr"> </cid:label>

 = This meta should contain the title of document and <cid:doc xml:lang "en">

not name of the file</cid:doc>
 = Cette meta devrait contenir le titre du document et <cid:doc xml:lang "fr">

non le nom du fichier</cid:doc>
</cid:meta>

 = =<cid:meta name "Content-type" is "http://purl.org/dc/elements/1.1/type">

 = Available archive formats<cid:label xml:lang "en"> </cid:label>

 application/zip<cid:value> </cid:value>

 application/jar<cid:value> </cid:value>

 application/x-tar<cid:value> </cid:value>

Specification: CID protocol Implementation requirements

Apr 2016 27

Restriction
A restriction is an implicit meta whose value is set by the server. The client should not send the value but
must consider the meta and its value as required for the execution of the process.

Minimal restriction declaration

A minimal restriction declaration contains a element, the attribute and a attribute.restriction name value

Describe a restriction

A restriction could contain the user oriented (label and elements) or system oriented (IRIs in localized doc

the attribute) description.is

Steps definition
The steps are the main part of the process. They define how the client and the server should communicate to
process the document transaction. One step represents an exchange of information between the client and
the server.
Each step could be defined using the same attributes :

required : contains a boolean which indicates if the processing of this step is mandatory or not.
Mandatory attribute

url : contain the url of the server where the client must send the request in order to start the processing
of this step.
Mandatory attribute

useMetas : contains the names (the names declared in the elements) of the optional metadata.meta

Optional attribute

needMetas : contains the names (the names declared in the elements) of the required metadata.meta

Optional attribute

returnMetas : contains the names (the names declared in the elements) of the metadata returned meta
by the server once the step processed.
Optional attribute

is : contains the IRIs that qualifies the step.
Optional attribute

Exchange step

An exchange step define a regular request from the client to the server. The user is not directly involved

6

Warning
At this stage of the process declaration, client and server does not have any implementation
requirements.

⚠

Example
1 = =



</cid:meta>

 = =<cid:restriction name "Zip-file-names-encoding" value "UTF-8"/>

Specification: CID protocol Implementation requirements

28 Apr 2016

An exchange step define a regular request from the client to the server. The user is not directly involved
in this transaction.

The technical details of the implementation is defined in the .transport section [p.29]

Interact step
An interact step define an exchanges between the user and the server, then between the server and the
client.

The technical details of the implementation is defined in the .transport section [p.29]

Upload step
An upload step define an exchanges between the client and the server .

The technical details of the implementation is defined in the .transport section [p.29]

Asynchronous upload
An asynchronous upload is a specific upload declared by the server when the time needed by the
processing of the uploaded file does not allow a synchronous response. The server could then define a
user-oriented and/or a system oriented wait system.

The user-oriented system reuse the interaction mechanism.
The system-oriented system reuse the exchange mechanism. The client must execute the wait step
until a valid server response.

User and system oriented wait mechanism must declare a attribute and could declare the url needMetas

, and step attributes.useMetas returnMetas

Declaration example
1 = =

 =/AuthorizeAction" required "false"/>



Declaration example
1 = =

 = =useMetas "dc-creator dc-modified" returnMetas "dc-title dc-creator dc-modified
 =tags" required "true"/>



Declaration example
1 = = =

 ="Public-url" required "true"/>



Declaration example
1 = =

 =creator dc-modified tags" required "true">
2 = =

"Public-url"/>
3 = =

url"/>
4



 = =<cid:exchange url "http://example.com/checkAuthorization" is "http://schema.org

 =/AuthorizeAction" required "false"/>

 = =<cid:interact url "http://example.com/interact-pre-delivery" needMetas "dc-title"

 = =useMetas "dc-creator dc-modified" returnMetas "dc-title dc-creator dc-modified
 =tags" required "true"/>

 = = =<cid:upload url "http://example.com/upload.php" useMetas "File-name" returnMetas

 ="Public-url" required "true"/>

 = =<cid:upload url "http://example.com/upload?step=start" needMetas "dc-title dc-

 =creator dc-modified tags" required "true">
 = =<cid:systemWait url "http://example.com/wait?method=system" returnMetas

"Public-url"/>
 = =<cid:userWait url "http://example.com/wait?method=user" returnMetas "Public-

url"/>
</cid:upload>

Specification: CID protocol Implementation requirements

Apr 2016 29

7.3. Transport : web transport
Once an available process selected by the client, the transport declaration defines how client and server
must communicate together. The of this chapter defines how a client must determine first section [p.22]

process/transport compliance.
The selection of a process/transport couple is left to the client. It could automate the selection or build a GUI
to delegate this choice to the user.
These specification only defines one transport possibilities : web transport which use a various web standard
such as HTTP requests, HTTP authentication or cookies.

Cid extensions could defines new transport modalities (see the for more details).next section [p.35]

Metadata and properties
Transports must define a way to communicate properties between client and server. A property is a basic
pair of key-value. Metadata are considered as document properties. A transport could define its own
properties.

web transport attributes
A web transport declaration could contains three attributes:

an attribute to bind processes to one or more specific transports (see the of this id first section [p.22]

chapter for more details);

a attribute;sessionProperties

a attribute.needCookies

Session properties
The sessionProperties attribute must contain a list of one or more properties names. A session property
could be returned by the server at any step of the process and must then be sent by client for the
following steps.

Cookies declaration
The attribute must contain a boolean value. A client which executes a process through a needCookies
web transport that needs cookies itself must support this standard.

Authentication
The element is required in the web transport definition. It could be empty or contain one or authentication
more of basic, web (or no authentication) elements.
An empty authentication element means that no authentication scheme is required to use this transport
definition. When this element has one or more children, the client must respect the requirement of one of
them in order to use this transport definition.

Basic HTTP authentication

Specification: CID protocol Implementation requirements

30 Apr 2016

Declaration

The declaration of a Basic HTTP authentication contains only the element.basicHttp

1
2

3

Implementation
When a web transport declaration contains a basic HTTP authentication scheme, the server must
accept basic HTTP authentication for each request that could regularly be sent with this transport
following process/transport compatibility defined in the of this chapter.first section [p.22]

When a client select a Basic HTTP authentication scheme, it must send a header in each authorization
request of the selected process.

Web authentication
Declaration

The declaration of a web authentication contains a element and an attribute.webAuthentication URL

1
2 =

3

Implementation
The server must furnish an authentication web page at the location specified in the URL attribute.
This page must be loaded by the client following the web interaction transport modalities (see further on
this section).
At the end of the web authentication interaction, the server must send a message (following the HTML 5
post message API) containing a property in the data part of the message. The authorized values cidAuth

of this property are and . This message must be considered by the client as the end succeeded failed
interaction message (see web interact for further detail on end interaction mechanism).

No authentication
Declaration

The declaration of a public access is declared by a single element.noAuthentication

1
2 =

3

4

Implementation

The element does not required any specific implementations for the server or client noAuthentication
side.

Warning
A web authentication required the definition of at least one web interaction request.

⚠

<cid:authentications>

 <cid:basicHttp/>

</cid:authentications>

<cid:authentications>

 = <cid:webAuthentication url "http://example.com/auth"/>

 </cid:authentications>

<cid:authentications>

 =<cid:webAuthentication url "http://example.com/auth"/>

 <cid:noAuthentication/>

 </cid:authentications>

Specification: CID protocol Implementation requirements

Apr 2016 31

Web exchange
The element defines how the exchange steps and system-oriented wait must be processed webExchange

by the client and the server. The definition of a element is composed of several request webExchange
definitions. Each request must define a HTTP method and a way to send params.

Defining a request

In a web exchange context, the method attribute of a request could have the , GET POST;application/x-www-

 or values. It defines the HTTP method that the client must use to form-urlencoded POST;multipart/form-data
communicate with the server. In the case of a POST HTTP request, the method contains also the kind of
form that is available to the client.
The properties attribute could contains the and values for a GET HTTP request plus the header queryString

 values for the POST HTTP requests.post

Implementation requirement
In order to process an exchange step, the client must select one of the defined requests. The client must then
select a method to send the properties in the attribute of the selected request.properties

Client requirement

properties\HTTP
method

GET POST;application/x-www-
form-urlencoded

POST;multipart/form-data

header the client must send a
HTTP GET request and
store the key/value of all
the properties in the
header of the request.

the client must send a HTTP
POST request and store the
key/value of all the
properties in the header of
the request.

the client must send a HTTP
POST request and store the
key/value of all the properties
in the header of the request.

queryString the client must send a
HTTP GET request and
store the key/value of all
the properties in the URL
as query string.

the client must send a HTTP
POST request and store the
key/value of all the
properties in the URL as
query string.

the client must send a HTTP
POST request and store the
key/value of all the properties
in the URL as query string.

post the client must send a HTTP

POST request and store the

the client must send a HTTP

POST request and store the

Example

The element allows a manifest to declare only one transport for either a public and noAuthentication
a restricted access.



Example of full webExchange declaration
This example is called full because the server implements all the possibilities of exchange transports.

1
2 = =

3 = =

"queryString header post"/>
4 = =

post"/>
5



<cid:webExchange>

 = =<cid:request method "GET" properties "header queryString"/>

 = =<cid:request method "POST;application/x-www-form-urlencoded" properties

"queryString header post"/>
 = =<cid:request method "POST;multipart/form-data" properties "header queryString

post"/>
</cid:webExchange>

Specification: CID protocol Implementation requirements

32 Apr 2016

POST request and store the
key/value of all the
properties in a url-encoded
form.

POST request and store the
key/value of all the properties
in a form-data.

The optional metadata or session properties returned by the server must be sent in the body or the response
in a json object.

Web Interact
The element defines how the interact steps and user-oriented wait must be processed by the webInteract

client and the server. The definition of a element is composed of several request definitions. webInteract
Each request must define a HTTP method and a way to send params.

Defining a request

In a web interact context, the method attribute of a request could have the , GET POST;application/x-www-

 or values. It defines the HTTP method that the client must use to form-urlencoded POST;multipart/form-data
communicate with the server. In the case of a POST HTTP request, the method contains also the kind of
form that is available to the client.
The properties attribute could contains the and values for a GET HTTP request plus the header queryString

 values for the POST HTTP requests.post

Implementation requirement
In order to process an interact step, the client must select one of the defined requests. The client must then
select a method to send the properties in the attribute of the selected request.properties

Client requirement

properties\HTTP
method

GET POST;application/x-www-
form-urlencoded

POST;multipart/form-data

header the client must send a
HTTP GET request and
store the key/value of all
the properties in the
header of the request.

the client must send a HTTP
POST request and store the
key/value of all the
properties in the header of
the request.

the client must send a HTTP
POST request and store the
key/value of all the properties
in the header of the request.

queryString the client must send a
HTTP GET request and
store the key/value of all

the properties in the URL

the client must send a HTTP
POST request and store the
key/value of all the

properties in the URL as

the client must send a HTTP
POST request and store the
key/value of all the properties

in the URL as query string.

Example of full webInteract declaration
This example is called full because the server implements all the possibilities of exchange transports.

1
2 = =

3 = =

"queryString header post"/>
4 = =

post"/>
5



<cid:webExchange>

 = =<cid:request method "GET" properties "header queryString"/>

 = =<cid:request method "POST;application/x-www-form-urlencoded" properties

"queryString header post"/>
 = =<cid:request method "POST;multipart/form-data" properties "header queryString

post"/>
</cid:webExchange>

Specification: CID protocol Implementation requirements

Apr 2016 33

the properties in the URL
as query string.

properties in the URL as
query string.

in the URL as query string.

post the client must send a HTTP
POST request and store the
key/value of all the
properties in a url-encoded
form.

the client must send a HTTP
POST request and store the
key/value of all the properties
in a form-data.

The result of the server must be a web page neutrally displayed in a web frame by the client. The
client must then let the user in direct interaction with the server. Once the interaction is done, the web page
must send an message through the postMessage API. This message must contain the metadata and
properties returned by the server and a property set to or :cidInteraction ended aborted

The value means that the user wants to cancel the process and the client should close its CID aborted

GUI. The client can't continue the process after and value.aborted cidInteraction

The value means that the interaction was regularly closed. The client must close the interaction ended
and continue the process.

Web Upload
The element defines how upload steps and user-oriented wait must be processed by the client webUpload

and the server. The definition of a element is composed of several request definitions. Each webUpload
request must define a HTTP method and a way to send params.

Defining a request

In a web interact context, the method attribute of a request could have the , , or GET PUT POST POST;

 values. It defines the HTTP method that the client must use to communicate with the multipart/form-data
server. In the case of a POST HTTP request, the method contains also the kind of form that is available to
the client.
The properties attribute could contains the and values for a GET or PUT HTTP request header queryString

plus the values for the HTTP request.post POST;multipart/form-data

Implementation requirement
In order to process an upload step, the client must select one of the defined requests. The client must then
select a method to send the properties in the attribute of the selected request.properties

Client requirement

properties\HTTP PUT GET POST POST;multipart/form-data

Example of full webUpload declaration
This example is called full because the server implements all the possibilities of exchange transports.

1
2 = =

3 = =

4 = =

5 = =

post"/>
6



<cid:webUpload>

 = =<cid:request method "GET" properties "header queryString"/>

 = =<cid:request method "PUT" properties "header queryString"/>

 = =<cid:request method "POST" properties "queryString header"/>

 = =<cid:request method "POST;multipart/form-data" properties "header queryString

post"/>
</cid:webUpload>

Specification: CID protocol Implementation requirements

34 Apr 2016

properties\HTTP
method

PUT GET POST POST;multipart/form-data

header the client must
send a HTTP PUT
request containing
the file to upload in
the request body
and store the key
/value of all the
properties in the
header of the
request.

the client must
send a HTTP GET
request containing
the file to upload in
the request body
and store the key
/value of all the
properties in the
header of the
request.

the client must
send a HTTP
POST request
containing the file
to upload in the
request body and
store the key/value
of all the
properties in the
header of the
request.

the client must send a
HTTP POST request
containing a form data
which store the file to
upload in a cidContent
field and store the key
/value of all the properties
in the header of the
request.

queryString the client must
send a HTTP PUT
request containing
the file to upload in
the request body
and store the key
/value of all the
properties in the
URL as query
string.

the client must
send a HTTP GET
request containing
the file to upload in
the request body
and store the key
/value of all the
properties in the
URL as query
string.

the client must
send a HTTP
POST request
containing the file
to upload in the
request body and
store the key/value
of all the
properties in the
URL as query
string.

the client must send a
HTTP POST request
containing a form data
which store the file to
upload in a cidContent
field and store the key
/value of all the properties
in the URL as query
string.

post the client must send a
HTTP POST request
containing a form data
which store the file to
upload in a cidContent
field and the key/value of
all the properties.

The optional metadata or session properties returned by the server must be sent in the body or the response
in a json object.

Asynchronous upload
When the process declares an asynchronous upload, the server could return an HTTP 202 code to the
upload request. The client must choose one of the system-oriented or user-oriented defined in the
process.
A wait must be processed exactly as an interaction step just after the upload. The URL is user-oriented
defined by the process and the transport layer must be conform to the webInteract declaration.
To process a wait, the client must repeat a request to the URL defined in the process system-oriented
following the webExchange declaration while the server is responding an HTTP 202 response code. The
final request must be responded by a 200 or server error response code. The interval between the
requests should be chosen by the client.

⚠

Specification: CID protocol Implementation requirements

Apr 2016 35

7.4. Cid extension
The CID protocol take the part of a strong process/transport distinction in the design of its extension
possibilities. The process part is designed to be generic and reused in any context. The transport part could
be extended by the addition of new kind of transport.
An valid CID extension must contains at least the schema of the extended manifest and the implementation
requirement of the new transport.

Note
The manifest schema of CID, included in these specifications, defines where CID extensions should be
written in the manifest : in the element.transports



Specification: CID protocol References

36 Apr 2016

8. References

URL : RFC 1738[https://www.ietf.org/rfc/rfc1738.txt]

HTTP: RFC 2616[http://www.ietf.org/rfc/rfc2616.txt]

HTTP Authentication : RFC 2617[https://www.ietf.org/rfc/rfc2617.txt]

HTTP State Management Mechanism : RFC 2109[https://www.ietf.org/rfc/rfc2109.txt]

IRI : RFC 3987[https://tools.ietf.org/html/rfc3987]

XML[http://www.w3.org/standards/xml/core]

XML Schema[http://www.w3.org/standards/xml/schema]

JSON[http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf]

https://www.ietf.org/rfc/rfc1738.txt
https://www.ietf.org/rfc/rfc1738.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
https://www.ietf.org/rfc/rfc2617.txt
https://www.ietf.org/rfc/rfc2617.txt
https://www.ietf.org/rfc/rfc2109.txt
https://www.ietf.org/rfc/rfc2109.txt
https://tools.ietf.org/html/rfc3987
https://tools.ietf.org/html/rfc3987
http://www.w3.org/standards/xml/core
http://www.w3.org/standards/xml/core
http://www.w3.org/standards/xml/schema
http://www.w3.org/standards/xml/schema
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

	Introduction
	Design goals
	Definitions
	Conformance
	Basic concepts
	Advanced Concepts
	Process
	Transport
	Extending CID

	Manifest schema
	Implementation requirements
	General requirements
	Process definition
	Transport : web transport
	Cid extension

	References

